

Pomp

[image: circleci]
 [https://circleci.com/gh/estin/pomp/tree/master][image: codecov]
 [https://codecov.io/gh/estin/pomp/branch/master][image: Latest PyPI version]
 [https://pypi.python.org/pypi/pomp/][image: python versions]
 [https://pypi.python.org/pypi/pomp][image: Have wheel]
 [https://pypi.python.org/pypi/pomp/][image: License]
 [https://pypi.python.org/pypi/pomp/]

Pomp is a screen scraping and web crawling framework. Pomp is inspired by and
similar to Scrapy [http://scrapy.org/], but has a simpler implementation that lacks the hard
Twisted [http://twistedmatrix.com/] dependency.

Features:

	Pure python

	Only one dependency for Python 2.x - concurrent.futures [http://pythonhosted.org/futures/] (backport of
package for Python 2.x)

	Supports one file applications; Pomps doesn’t force a specific project layout
or other restrictions.

	Pomp is a meta framework like Paste [http://pythonpaste.org/]: you may use it to create your own
scraping framework.

	Extensible networking: you may use any sync or async method.

	No parsing libraries in the core; use you preferred approach.

	Pomp instances may be distributed and are designed to work with an external
queue.

Pomp makes no attempt to accomodate:

	redirects

	proxies

	caching

	database integration

	cookies

	authentication

	etc.

If you want proxies, redirects, or similar, you may use the excellent
requests [http://www.python-requests.org/en/latest/] library as the Pomp downloader.

Pomp examples [https://github.com/estin/pomp/tree/master/examples]

Pomp docs [http://pomp.readthedocs.org]

Pomp is written and maintained by Evgeniy Tatarkin and is licensed under the
BSD license.

User’s Guide

This part of the documentation will show you how to get started in using Pomp.

	Quickstart
	A Minimal Application

	Item pipelines

	Custom downloader

	Downloader middleware

	Architecture

API Reference

If you are looking for information on a specific function, class or
method, this part of the documentation is for you.

	API
	Contrib

	Engine

	Interfaces

	Utils

Quickstart

Pomp is fun to use, incredibly easy for basic applications.

A Minimal Application

For a minimal application all you need is to define you crawler
by inherit base.BaseCrawler

import re
from pomp.core.base import BaseCrawler
from pomp.contrib.urllibtools import UrllibHttpRequest

python_sentence_re = re.compile('[\w\s]{0,}python[\s\w]{0,}', re.I | re.M)

class MyCrawler(BaseCrawler):
 """Extract all sentences with `python` word"""
 ENTRY_REQUESTS = UrllibHttpRequest('http://python.org/news') # entry point

 def extract_items(self, response):
 for i in python_sentence_re.findall(response.body.decode('utf-8')):
 sentence = i.strip()
 print("Sentence: {}".format(sentence))
 yield sentence

if __name__ == '__main__':
 from pomp.core.engine import Pomp
 from pomp.contrib.urllibtools import UrllibDownloader

 pomp = Pomp(
 downloader=UrllibDownloader(),
)

 pomp.pump(MyCrawler())

Item pipelines

For processing extracted items pomp has pipelines mechanism.
Define pipe by subclass of base.BasePipeline and pass
it to engine.Pomp constructor.

Pipe calls one by one

Example pipelines for filtering items with length less the 10 symbols and
printing sentence:

class FilterPipeline(BasePipeline):
 def process(self, crawler, item):
 # None - skip item for following processing
 return None if len(item) < 10 else item

class PrintPipeline(BasePipeline):
 def process(self, crawler, item):
 print('Sentence:', item, ' length:', len(item))
 return item # return item for following processing

pomp = Pomp(
 downloader=UrllibDownloader(),
 pipelines=(FilterPipeline(), PrintPipeline(),)
)

See Simple pipelines

Custom downloader

For download data from source target application can define
downloader to implement special protocols or strategies.

Custom downloader must be subclass of base.BaseDownloader

For example downloader fetching data by requests [http://docs.python-requests.org/] package.

import requests as requestslib
from pomp.core.base import BaseDownloader, BaseCrawlException
from pomp.core.base import BaseHttpRequest, BaseHttpResponse

class ReqRequest(BaseHttpRequest):
 def __init__(self, url):
 self.url = url

class ReqResponse(BaseHttpResponse):
 def __init__(self, request, response):
 self.request = request

 if not isinstance(response, Exception):
 self.body = response.text

 def get_request(self):
 return self.request

class RequestsDownloader(BaseDownloader):

 def process(self, crawler, request):
 try:
 return ReqResponse(request, requestslib.get(request.url))
 except Exception as e:
 print('Exception on %s: %s', request, e)
 return BaseCrawlException(request, exception=e)

if __name__ == '__main__':
 from pomp.core.base import BaseCrawler
 from pomp.core.engine import Pomp

 class Crawler(BaseCrawler):
 ENTRY_REQUESTS = ReqRequest('http://python.org/news/')

 def extract_items(self, response):
 print(response.body)

 def next_requests(self, response):
 return None # one page crawler

 pomp = Pomp(
 downloader=RequestsDownloader(),
)

 pomp.pump(Crawler())

Downloader middleware

For hook request before it executed by downloader or response before it
passed to crawler in pomp exists middlewares framework.

Middleware must be subclass of base.BaseMiddleware.

Each request will be passed to middlewares one by one in order it will passed to
downloader.
Each response/exception will be passed to middlewares one by one in
reverse order.

For example statistic middleware:

from pomp.core.base import BaseMiddleware

class StatisticMiddleware(BaseMiddleware):
 def __init__(self):
 self.requests = self.responses = self.exceptions = 0

 def process_request(self, request, crawler, downloader):
 self.requests += 1
 return request

 def process_response(self, response, crawler, downloader):
 self.responses += 1
 return response

 def process_exception(self, exception, crawler, downloader):
 self.exceptions += 1
 return exception

Architecture

Similarly to Scrapy architecture [http://doc.scrapy.org/en/latest/topics/architecture.html]

[image: Pomp architecture]

	Request (base.BaseHttpRequest) from queue
(base.BaseQueue) by engine (base.BaseEngine)
passed to middlewares (base.BaseMiddleware) and then executed
by downloader (base.BaseDownloader). Downloader can process
request in concurrent way and return deferred result
(utils.Planned).

	Response (base.BaseHttpResponse) passed back to middlewares in
reverse order and then to the crawler (base.BaseCrawler).
Crawler can process response in concurrent way and return deferred
result like downloader.

	Extracted data passed to item pipeline.

	Next requests if they exists will be putted to the queue.

API

This part of the documentation documents all the public classes and
functions in pomp.

Contrib

Urllib

Downloader and middleware implementations.

	Downloaders: Fetches data by standard urllib.urlopen (Python 3.x) or
urllib2.urlopen (Python 2.7+)

	
class pomp.contrib.urllibtools.UrllibAdapterMiddleware

	Middlerware for adapting urllib.Request
to pomp.core.base.BaseHttpRequest

	
class pomp.contrib.urllibtools.UrllibDownloader(timeout=None)

	Simplest downloader

	Parameters:	timeout – request timeout in seconds

	
class pomp.contrib.urllibtools.UrllibHttpRequest(url, data=None, headers={}, origin_req_host=None, unverifiable=False, method=None)

	Adapter for urllib request to pomp.core.base.BaseHttpRequest

	
class pomp.contrib.urllibtools.UrllibHttpResponse(request, response)

	Adapter for urllib response to
pomp.core.base.BaseHttpResponse

Concurrent future

Concurrent downloaders

	
class pomp.contrib.concurrenttools.ConcurrentCrawler(worker_class, worker_kwargs=None, pool_size=5)

	Concurrent ProcessPoolExecutor crawler

	Parameters:	
	pool_size – pool size of ProcessPoolExecutor

	timeout – request timeout in seconds

	
class pomp.contrib.concurrenttools.ConcurrentDownloader(worker_class, worker_kwargs=None, pool_size=5)

	Concurrent ProcessPoolExecutor downloader

	Parameters:	
	pool_size – size of ThreadPoolExecutor

	timeout – request timeout in seconds

	
class pomp.contrib.concurrenttools.ConcurrentUrllibDownloader(pool_size=5, timeout=None)

	Concurrent ProcessPoolExecutor downloader for fetching data with urllib
pomp.contrib.SimpleDownloader

	Parameters:	
	pool_size – pool size of ProcessPoolExecutor

	timeout – request timeout in seconds

Simple pipelines

Simple pipelines

	
class pomp.contrib.pipelines.CsvPipeline(output_file, *args, **kwargs)

	Save items to CSV format

Params *args and **kwargs passed to csv.writer constuctor.

	Parameters:	output_file – Filename of file-like object or a file object. If
output_file is a file-like object, then the file will
remain open after the pipe is stopped.

	
class pomp.contrib.pipelines.UnicodeCsvWriter(f, dialect=<class 'csv.excel'>, encoding='utf-8', **kwds)

	A CSV writer that writes rows to CSV file f with the given encoding.

Item and Field

	
class pomp.contrib.item.Item(*args, **kwargs)

	OrderedDict subclass

Engine

Engine

	
class pomp.core.engine.Pomp(downloader, middlewares=None, pipelines=None, queue=None, breadth_first=False)

	Configuration object

This class glues together all parts of a Pomp instance:

	Downloader implementation and middleware

	Item pipelines

	Crawler

	Parameters:	
	downloader – pomp.core.base.BaseDownloader

	middlewares – list of middlewares, instances
of BaseMiddleware

	pipelines – list of item pipelines
pomp.core.base.BasePipeline

	queue – external queue, instance of pomp.core.base.BaseQueue

	breadth_first – use BFO order or DFO order, sensibly if used internal
queue only

	
LOCK_FACTORY()

	allocate_lock() -> lock object
(allocate() is an obsolete synonym)

Create a new lock object. See help(type(threading.Lock())) for
information about locks.

	
pump(crawler)

	Start crawling

	Parameters:	crawler – instance of pomp.core.base.BaseCrawler

Interfaces

Base classes

Note

All classes in this package must be subclassed.

	
exception pomp.core.base.BaseCrawlException(request=None, response=None, exception=None, exc_info=None)

	Download exception interface

	Parameters:	
	request – request raises this exception

	response – response raises this exception

	exception – original exception

	exc_info – result of sys.exc_info call

	
class pomp.core.base.BaseCrawler

	Crawler interface

The crawler must implement two tasks:

	Extract data from response

	Extract urls from response for follow-up processing

Each crawler must have one or more url starting points.
To set the entry urls, declare them as class attribute ENTRY_REQUESTS:

class MyGoogleCrawler(BaseCrawler):
 ENTRY_REQUESTS = 'http://google.com/'
 ...

ENTRY_REQUESTS may be a list of urls or list of requests
(instances of BaseHttpRequest).

	
extract_items(response)

	Parse page and extract items.

May be awaitable.

	Parameters:	response – the instance of BaseHttpResponse

	Return type:	item/items of any type
or type of pomp.contrib.item.Item
or request/requests type of BaseHttpRequest
or string/strings for following processing as requests

	
next_requests(response)

	Returns follow-up requests for processing.

Called after the extract_items method.

May be awaitable.

	Note:	Subclass may not implement this method.
Next requests may be returned with items in extrat_items method.

	Parameters:	response – the instance of BaseHttpResponse

	Return type:	None or request or requests (instance of
BaseHttpRequest or str). None response indicates that
that this page does not any urls for follow-up processing.

	
on_processing_done(response)

	Called when request/response was fully processed by middlewares,
this crawler and and pipelines.

May be awaitable.

	Parameters:	response – the instance of BaseHttpResponse

	
class pomp.core.base.BaseDownloadWorker

	Download worker interface

	
process(request)

	Execute request

May be awaitable.

	Parameters:	request – instance of BaseHttpRequest

	Return type:	instance of BaseHttpResponse or
BaseCrawlException or Planned
or asyncio.Future for async behavior

	
class pomp.core.base.BaseDownloader

	Downloader interface

The downloader must implement one task:

	make http request and fetch response.

	
get_workers_count()

	

	Return type:	count of workers (pool size), by default 0

	
process(crawler, request)

	Execute request

May be awaitable.

	Parameters:	
	crawler – crawler that extracts items

	request – instances of BaseHttpRequest

	Return type:	instance of BaseHttpResponse or
BaseCrawlException or Planned
or asyncio.Future object for async behavior

	
start(crawler)

	Prepare downloader before processing starts.

May be awaitable.

	Parameters:	crawler – crawler that extracts items

	
stop(crawler)

	Stop downloader.

May be awaitable.

	Parameters:	crawler – crawler that extracts items

	
class pomp.core.base.BaseHttpRequest

	HTTP request interface

	
class pomp.core.base.BaseHttpResponse

	HTTP response interface

	
get_request()

	Request BaseHttpRequest

	
class pomp.core.base.BaseMiddleware

	Middleware interface

	
process_exception(exception, crawler, downloader)

	Handle exception

May be awaitable.

	Parameters:	
	exception – instance of BaseCrawlException

	crawler – instance of BaseCrawler

	downloader – instance of BaseDownloader

	Return type:	changed response or None to skip
processing of this exception

	
process_request(request, crawler, downloader)

	Change request before it will be executed by downloader

May be awaitable.

	Parameters:	
	request – instance of BaseHttpRequest

	crawler – instance of BaseCrawler

	downloader – instance of BaseDownloader

	Return type:	changed request or None to skip execution of this request

	
process_response(response, crawler, downloader)

	Modify response before content is extracted by the crawler.

May be awaitable.

	Parameters:	
	response – instance of BaseHttpResponse

	crawler – instance of BaseCrawler

	downloader – instance of BaseDownloader

	Return type:	changed response or None to skip
processing of this response

	
class pomp.core.base.BasePipeline

	Pipeline interface

The function of pipes are to:

	filter items

	change items

	store items

	
process(crawler, item)

	Process extracted item

May be awaitable.

	Parameters:	
	crawler – crawler that extracts items

	item – extracted item

	Return type:	item or None if this item is to be skipped

	
start(crawler)

	Initialize pipe

Open files and database connections, etc.

May be awaitable.

	Parameters:	crawler – crawler that extracts items

	
stop(crawler)

	Finalize pipe

Close files and database connections, etc.

May be awaitable.

	Parameters:	crawler – crawler that extracts items

	
class pomp.core.base.BaseQueue

	Blocking queue interface

	
get_requests(count=None)

	Get from queue

Note

must block execution until item is available

	Parameters:	count – count of requests to be processed by downloader
in concurrent mode, None - downloader have not
concurrency (workers). This param can be ignored.

	Return type:	instance of BaseRequest or Planned
or list of them

	
put_requests(requests)

	Put to queue

	Parameters:	requests – instance of BaseRequest or list of them

	
class pomp.core.base.BaseRequest

	Request interface

	
class pomp.core.base.BaseResponse

	Response interface

Utils

	
exception pomp.core.utils.CancelledError

	The Planned was cancelled.

	
exception pomp.core.utils.Error

	Base class for all planned-related exceptions.

	
exception pomp.core.utils.NotDoneYetError

	The Planned was not completed.

	
class pomp.core.utils.Planned

	Clone of Future object [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future], but without thread conditions (locks).

Represents the result of an asynchronous computation.

	
add_done_callback(fn)

	Attaches a callable that will be called when the future finishes.

	Args:

	
	fn: A callable that will be called with this future as its only

	argument when the future completes or is cancelled. If the
future has already completed or been cancelled then the
callable will be called immediately. These
callables are called in the order that they were added.

	
cancel()

	Cancel the future if possible.

Returns True if the future was cancelled, False otherwise. A future
cannot be cancelled if it is running or has already completed.

	
cancelled()

	Return True if the future was cancelled.

	
done()

	Return True of the future was cancelled or finished executing.

	
result()

	Return the result of the call that the future represents.

	Returns:

	The result of the call that the future represents.

	Raises:

	CancelledError: If the future was cancelled.
Exception: If the call raised then that exception will be raised.

	
set_result(result)

	Sets the return value of work associated with the future.

Should only be used by Executor implementations and unit tests.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pomp	

 	
 	
 pomp.contrib.concurrenttools	

 	
 	
 pomp.contrib.item	

 	
 	
 pomp.contrib.pipelines	

 	
 	
 pomp.contrib.urllibtools	

 	
 	
 pomp.core.base	

 	
 	
 pomp.core.engine	

 	
 	
 pomp.core.utils	

Index

 A
 | B
 | C
 | D
 | E
 | G
 | I
 | L
 | N
 | O
 | P
 | R
 | S
 | U

A

 	
 	add_done_callback() (pomp.core.utils.Planned method)

B

 	
 	BaseCrawler (class in pomp.core.base)

 	BaseCrawlException

 	BaseDownloader (class in pomp.core.base)

 	BaseDownloadWorker (class in pomp.core.base)

 	BaseHttpRequest (class in pomp.core.base)

 	
 	BaseHttpResponse (class in pomp.core.base)

 	BaseMiddleware (class in pomp.core.base)

 	BasePipeline (class in pomp.core.base)

 	BaseQueue (class in pomp.core.base)

 	BaseRequest (class in pomp.core.base)

 	BaseResponse (class in pomp.core.base)

C

 	
 	cancel() (pomp.core.utils.Planned method)

 	cancelled() (pomp.core.utils.Planned method)

 	CancelledError

 	
 	ConcurrentCrawler (class in pomp.contrib.concurrenttools)

 	ConcurrentDownloader (class in pomp.contrib.concurrenttools)

 	ConcurrentUrllibDownloader (class in pomp.contrib.concurrenttools)

 	CsvPipeline (class in pomp.contrib.pipelines)

D

 	
 	done() (pomp.core.utils.Planned method)

E

 	
 	Error

 	
 	extract_items() (pomp.core.base.BaseCrawler method)

G

 	
 	get_request() (pomp.core.base.BaseHttpResponse method)

 	
 	get_requests() (pomp.core.base.BaseQueue method)

 	get_workers_count() (pomp.core.base.BaseDownloader method)

I

 	
 	Item (class in pomp.contrib.item)

L

 	
 	LOCK_FACTORY() (pomp.core.engine.Pomp method)

N

 	
 	next_requests() (pomp.core.base.BaseCrawler method)

 	
 	NotDoneYetError

O

 	
 	on_processing_done() (pomp.core.base.BaseCrawler method)

P

 	
 	Planned (class in pomp.core.utils)

 	Pomp (class in pomp.core.engine)

 	pomp.contrib.concurrenttools (module)

 	pomp.contrib.item (module)

 	pomp.contrib.pipelines (module)

 	pomp.contrib.urllibtools (module)

 	pomp.core.base (module)

 	pomp.core.engine (module)

 	
 	pomp.core.utils (module)

 	process() (pomp.core.base.BaseDownloader method)

 	(pomp.core.base.BaseDownloadWorker method)

 	(pomp.core.base.BasePipeline method)

 	process_exception() (pomp.core.base.BaseMiddleware method)

 	process_request() (pomp.core.base.BaseMiddleware method)

 	process_response() (pomp.core.base.BaseMiddleware method)

 	pump() (pomp.core.engine.Pomp method)

 	put_requests() (pomp.core.base.BaseQueue method)

R

 	
 	result() (pomp.core.utils.Planned method)

S

 	
 	set_result() (pomp.core.utils.Planned method)

 	start() (pomp.core.base.BaseDownloader method)

 	(pomp.core.base.BasePipeline method)

 	
 	stop() (pomp.core.base.BaseDownloader method)

 	(pomp.core.base.BasePipeline method)

U

 	
 	UnicodeCsvWriter (class in pomp.contrib.pipelines)

 	UrllibAdapterMiddleware (class in pomp.contrib.urllibtools)

 	
 	UrllibDownloader (class in pomp.contrib.urllibtools)

 	UrllibHttpRequest (class in pomp.contrib.urllibtools)

 	UrllibHttpResponse (class in pomp.contrib.urllibtools)

 _static/up.png

nav.xhtml

 Table of Contents

 		Pomp

 		Quickstart

 		A Minimal Application

 		Item pipelines

 		Custom downloader

 		Downloader middleware

 		Architecture

 		API

 		Contrib

 		Urllib

 		Concurrent future

 		Simple pipelines

 		Engine

 		Interfaces

 		Utils

_static/comment.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/pomp-architecture-gliffy-diag.png
4.BaseHttpRequest

< 1.BaseHtpRequest BaseQueve gt requests()

put_requests)
BasePipeline process(

‘BaseDownioader

.___m B___

BaselMiddleware process_request()
process_response)

Mocessomcopiong BaseCramersxact tems)

2.BaseHttpResponse
BaseCraiier

TRy

Pomp v0.2 architecture

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_images/pomp-architecture-gliffy-diag.png
4.BaseHttpRequest

< 1.BaseHtpRequest BaseQueve gt requests()

put_requests)
BasePipeline process(

‘BaseDownioader

.___m B___

BaselMiddleware process_request()
process_response)

Mocessomcopiong BaseCramersxact tems)

2.BaseHttpResponse
BaseCraiier

TRy

Pomp v0.2 architecture

_static/comment-bright.png

